

广州天嵌计算机科技有限公司

地址: 广东省广州市番禺区大石街南大路鸿图工业园 A1 栋 402 邮编:511430 电话: 020-38373101-805 804 802(销售) 020-38373101-810 814 (技术支持) 官方网站: <u>www.embedsky.com</u> 官方论坛: <u>www.armbbs.net</u> E-mail: <u>sales@embedsky.net</u> (销售) <u>support@embedsky.net</u> (技术支持)

目录

编译程序	2
SD 卡测试	3
U 盘测试	4
USB 摄像头测试	5
LED 测试	6
按键测试	7
看门狗测试	8
UART 测试	9
I2C 测试	10
背光测试	11
GPIO 测试	12
CAN 测试	13
RTC 测试	14
SSH 测试	15
FTP 测试	16
屏幕校准测试	17
显示测试	18
音频播放测试	19
SPI 测试	20
4G 模块测试	21
WiFi 模块测试	23
Wifi 热点发送功能	23
Wifi 连接热点功能	24

编译程序

以下测试方法中所用到的测试程序均提供源码,在 <u>http://www.embedsky.com/</u>网站中的维基教程 中可以下载源码,下面是编译源码的步骤(注:编译前需先搭建好编译环境):

#tar xjf test_demo.tar.bz2 - C /

#cd /opt/EmbedSKy/test_demo

#./build.sh

编译完成之后可以在/opt/EmbedSky/test_demo/out 目录下看到可执行程序,将其拷贝到板卡中直 接运行即可达到下面测试同样的效果。

build.sh 脚本中默认使用 arm-linux-gnueabihf-gcc 交叉编译器,如需使用其他交叉编译器,可以修改 build.sh 文件,将其中的 "export CROSS_COMPILE=arm-linux-gnueabihf-" 改为所用的即可。

SD 卡测试

SD 卡格式需要设置为 FAT,板子才会识别并自动挂载。插入 SD 卡时,串口会打印识别和 SD 卡挂载信息,使用命令 df 查看 SD 挂载目录:

root@Embedsky:	~# QT				
Filesystem	1K-blocks	Used	Available	Use%	Mounted on
/dev/root	5951492	795580	5139528	14%	/
devtmpfs	833752	4	833748	1%	/dev
tmpfs	1030564	256	1030308	1%	/run
tmpfs	1030564	136	1030428	1%	/var/volatile
/dev/mmcblk3p1	91942	8786	83156	10%	/boot
/dev/mmcblk3p3	1133528	1792	1072492	1%	/recovery
/dev/mmcblk1p1	15473096	4256	15468840	1%	/run/media/mmcblk1p1

使用命令进入挂载目录: cd /run/media/mmcblk1p1/,使用命令进行写操作创建一个 tianqian.txt 文档: touch tianqian.txt,使用 ls 命令查看目录内容,创建成功 SD 卡测试成功。如图:

root@Embedsky:~# cd /run/media/mmcblk1p1
root@Embedsky:/run/media/mmcblk1p1# ls
ceshi ceshi.rar test

root@Embedsky:/run/media/mmcblk1p1# touch tianqian.txt root@Embedsky:/run/media/mmcblk1p1# ls ceshi ceshi.rar test tianqian.txt

U盘测试

将 U 盘格式化成 fat 格式, 插入 u 盘查看调试串口信息, 会打印 usb 的 u 盘挂载相关信息, 如图:

root@Embedsky:/# usb 1-1.2: new high-speed USB device number 3 using ci_hdrc usb 1-1.2: New USB device found, idVendor=0bda, idProduct=0150 usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 usb 1-1.2: Product: USB2.0-CRW usb 1-1.2: Manufacturer: Generic usb 1-1.2: SerialNumber: 20120926571200000 usb-storage 1-1.2:1.0: USB Mass Storage device detected scsi host1: usb-storage 1-1.2:1.0 scsi 1:0:0:0: Direct-Access Generic- Multi-Card 1.00 PQ: 0 ANSI: 4 sd 1:0:0:0: [sda] 31116288 512-byte logical blocks: (15.9 GB/14.8 GiB) sd 1:0:0:0: [sda] Write Protect is off sd 1:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA sda: sda1 sd 1:0:0:0: [sda] Attached SCSI removable disk

使用命令 df 查看 U 盘挂载目录:

root@Embedsky:/# df 1K-blocks Used Available Use% Mounted on Filesystem 14% /dev/root 5951492 795580 5139528 devtmpfs 833752 4 833748 1% /dev tmpfs 1% 1030564 1030300 264 /run tmpfs 1030564 136 1030428 1% /var/volatile /dev/mmcblk3p1 91942 8786 83156 10% /boot 1133528 1072492 /dev/mmcblk3p3 1792 1% /recovery 192.168.1.74:/nfsroot 163975680 16371072 139252096 11% /mnt /dev/sda1 15473096 895880 14577216 6% /run/media/sda1

使用命令进入挂载目录: cd /run/media/sda1,使用命令进行写操作创建一个 tq.txt 文档: touch tq.txt, 使用 ls 命令查看目录内容,创建成功 USB 测试成功。如图:

```
root@Embedsky:/# cd /run/media/sda1
root@Embedsky:/run/media/sda1# touch tq.txt
root@Embedsky:/run/media/sda1# ls
EmbedSky.ini
imx6q-sabresd_IMx6_CoreC_for_linux_V3.14.3.dtb
rootfs_qt5_IMx6_for_linux_V3.8.2.img
tq.txt
u-boot_IMx6_for_linux_V3.14.5.imx
zImage_IMx6_for_linux_V3.14.5
```


USB 摄像头测试

目前测试程序只支持 uvc 格式的 usb 摄像头,将 usb 接口接入板卡中,在控制台中输入:

#/test_file/uvc_test /dev/videoX

其中/dev/videoX 为摄像头的设备节点,根据实际情况设置,执行完成之后可以在显示屏上看到 usb 摄像头采集到的图像。

LED 测试

1.查看 led 灯设备

#ls /sys/class/leds/

查看到的目录除 mmcX::开头的外,其余均是 led 灯设备

2.控制 led 灯

控制 LED 只是设置一下高低电平即可。系统下所有的 led 灯操作方法是一样的,只是路径不一样。

控制灯亮:

#echo 1 > /sys/class/leds/xxx/brightness

控制灯灭:

#echo 0 > /sys/class/leds/xxx/brightness

其中 xxx 为步骤 1 中查看到的 led 设备。

按键测试

在命令行中执行:

#/test_file/key_test

按下按键,终端打印按键按下,按键弹起,按回车键退出程序。

看门狗测试

执行命令:

#/test_file/watchdog_test

程序会到/dev/watchdog 目录找看门狗设备节点,如果没找到,则会打印 watchdog no found,如果找到,则会打开看门狗设备,喂狗,中断程序后系统则会自动重启。

UART 测试

在<u>http://wiki.armbbs.net/tqwiki/public/docs/</u>链接中找到所使用的板卡,然后进入"硬件开发指南->pin 脚功能"目录寻找 uart 的管脚和设备节点.

(1) 测试串口收发测试

使用串口2发送数据:

#/test_file/uart_test /dev/ttySAC1 -b 115200 -w "123456"

其中 "/dev/ttySAC1"对应串口设备节点, "123456"为发送的数据, 可根据实际需要修改。

使用串口2接收数据:

#/test_file/uart_test /dev/ttySAC1 -b 115200 -r -l

下图是对/dev/ttySAC1 进行自收发的运行截图:

loot@Embedsky:~# /test_file/uart_test /dev/ttySAC1 -b 115200 -asc -rw "123456" -1 Device [/dev/ttySAC1] format ascii read write w:123456 loop true boudrate = 115200 interval : 1000 ms /dev/ttySAC1 write :123456 /dev/ttySAC1 read=6 : 123456 /dev/ttySAC1 write :123456 /dev/ttySAC1 read=6 : 123456 /dev/ttySAC1 read=6 : 123456

注:如需一直接收或发送可以增加"-I"参数。

I2C 测试

在<u>http://wiki.armbbs.net/tqwiki/public/docs/</u>链接中找到所使用的板卡, 然后进入"硬件开发指南->pin 脚功能"目录寻找 i2c 的管脚和设备节点,例如笔者将其与测试模块的 EPROM 芯片相连接。

在命令行输入:

#/test_file/i2c_test /dev/i2c-2

其中/dev/i2c-2为 I2C节点设备,测试时根据所要测试的 I2C选择相应 I2C节点,测试前确认将 I2C的 SDA和 SCL线连至 I2C芯片。

测试结果如下所示:

背光测试

1.查看背光设备

#ls /sys/class/backlight/

查看到的目录背光设备,每个目录表示一个设备。

2.查看可设置的最亮值

#cat /sys/class/backlight/xxx/max_brightness

其中 xxx 为步骤 1 中查看到的设备。

3.查看当前背光亮度值:

#cat /sys/class/backlight/xxx/brightness

其中 xxx 为步骤 1 中查看到的设备。

4.设置背光亮度值:

#echo N > /sys/class/backlight/xxx/brightness

其中 xxx 为步骤 1 中查看到的设备, N 为背光亮度值, 最大值为步骤 2 获取到的值。

广州天嵌计算机科技有限公司
 <sup>地址: 广东省广州市番禺区大石街南大路湾图工业园 A1 栋 402 邮编:511430
 电话: 020-38373101-805 804 802 (销售) 020-38373101-810 814 (技术支持)
 官方网站: <u>www.embedsky.com</u> 官方论坛: <u>www.armbbs.net</u>
 E-mail: <u>sales@embedsky.net</u> (销售) <u>support@embedsky.net</u> (技术支持)
</sup>

GPIO 测试

(1) GPIO ID 的获取:引脚名称的格式为 GPIOx_y, 其编号等于(x-1)*32+y,

例如: GPIO2_7:(2-1)*32+7=39,则其引脚编号为 39.

(2) 控制 GPIO 输出电平:

将 gpio id 为 104 的管脚设置为输出高电平:

#/test_file/gpio_test 104 1

将 gpio id 为 104 的管脚设置为输出低电平:

#/test_file/gpio_test 104 0

(3) 读取 GPIO 输入电平:

读取 gpio id 为 104 的管脚输入电平状态:

#/test_file/gpio_test 104

测试结果如下所示:

CAN 测试

设置 can0(节点为 can0)的步骤如下:

(1) 设置波特率之前必须先关闭 can 口:

ifconfig can0 down

(2) 设置波特率为 1000000:

ip link set can0 type can bitrate 1000000 triple-sampling on

(3) 打开 can 口:

#ifconfig can0 up

设置其他节点(如 can1 等)只需将上面的 can0 替换掉即可。

接收:

#candump can0 &

发送 can 数据,其中 can id 为 111,数据为: 1122334455667788 :

#cansend can0 111#1122334455667788

RTC 测试

读取系统时间:

#data

设置系统时间:

#date -s "YYYY-MM-DD XX:XX:XX" (年月日 时分秒)

将系统时间写入到硬件 RTC 芯片中:

#hwclock -w

读取硬件 RTC 时间:

#hwclock -r

SSH 测试

1.先在开发板中配置好网络,例如下面命令是将开发板的 ip 设置为 192.168.1.236:

#ifconfig eth0 192.168.1.236

2.然后在 PC 中执行 ssh root@192.168.1.236 可以登录开发板(前提是网络能够互相 ping 通)

3.第一次登录对方主机,系统一般会出现下面的提示:

root@ubuntu:/home/ljh/test_demo_20181204/out# ssh root@192.168.1.236 The authenticity of host '192.168.1.236 (192.168.1.236)' can't be established. RSA key fingerprint is SHA256:2r76nxsVip1lKeTgEOhcJb7pN2HDE201ICxORXRJO6U. Are you sure you want to continue connecting (yes/no)? yes

输入 yes,

Warning: Permanently added '192.168.1.236' (RSA) to the list of known hosts. root@Embedsky:~# evdevtouch: Cannot open input device /dev/input/event1 (No such file or directory) Unable to query physical screen size, defaulting to 100 dpi. To override, set QT_QPA_EGLFS_PHYSICAL_WIDTH and QT_QPA_EGLFS_PHYSICAL_HEIGHT (i n millimeters).

按 ctrl+c,即可看到登录成功:

root@	Embeds	ky:/# ls					
bin	etc	ĺiḃ	mnt	recovery	sbin	tmp	var
boot	home	lost+found	opt	root	sys	unit_tests	
dev	init	media	proc	run	test_file	usr	

退出 SSH 的时候输入"~"与"Ctrl-Z"组合。注意: 当输入"~"时不会立即在屏幕上看到,只有当你按下 <Ctrl-Z>并且按回车之后才一起显示。如下,在远程主机中以此输入"~<Ctrl-Z>":

root@Embedsky:/# ~^Z [suspend ssh]

[1]+ Stopped ssh root@192.168.1.236
root@ubuntu:/home/ljh/test_demo_20181204/out# []

FTP 测试

按照 WIKI 教程中的环境搭建章节搭建好 ftp 服务器

获取 pc 机服务器上的文件,执行以下命令:

#ftpget -u ftpname -p 123 192.168.1.xxx filename

其中 123 为用户 ftpname 的密码,192.168.1.xxx 为 ftp 服务器的 ip, filename 为需要获取的文件名。

root@Embedsky:/opt# ftpget -u ftpname -p 123 192.168.1.74 111.txt root@Embedsky:/opt# ls 111.txt PDA

屏幕校准测试

运行校准程序:

#ts_calibrate

运行完之后可以在屏幕中看到校准准心,点击完 5 次准心后完成校准 运行校准测试程序:

#ts_test

运行完之后可以点击屏幕,屏幕上的准心会跟随触摸走动

显示测试

运行测试 fb_test 可在显示屏上显示一张 bmp 图,使用方法如下:

#/test_file/fb_test /test_file/logo.bmp

执行完后可以看到文件/test_file/logo.bmp 在屏幕上显示。

音频播放测试

系统的音频架构为 alsa,支持大部分的 alsa 测试方法,由于 alsa 架构比较复杂,这里只介绍 最简单的测试方式:

1. 播放音乐

在命令行输入:

#aplay /usr/share/sounds/alsa/Front_Center.wav

可以播放该 wav 文件。

enter.wavdský:/opt/EmbedSký/test_demo/out# aplay /usr/share/sounds/alsa/Front_Ce Playing WAVE '/usr/share/sounds/alsa/Front_Center.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Mono

注意: aplay 不可以播放 mp3 文件。

2. 查看控制单元

amixer 工具主要完成控制部分,命令行执行: amixer controls

root@Embedsky:/# amixer controls numid=8,iface=MIXER,name='Headphone Mux' numid=6,iface=MIXER,name='Headphone Playback ZC Switch' numid=5,iface=MIXER,name='Headphone Playback Volume' numid=1,iface=MIXER,name='PCM Playback Volume' numid=7,iface=MIXER,name='Mic Volume' numid=3,iface=MIXER,name='Capture Attenuate Switch (-6dB)' numid=9,iface=MIXER,name='Capture Mux' numid=4,iface=MIXER,name='Capture ZC Switch' numid=2,iface=MIXER,name='Capture Volume'

3. 设置耳机音量

amixer cget numid=\$id

使用以上命令查看相关属性的设置的情况。

amixer cset numid=\$id \$val

使用以上命令进行相关属性的设置。

从上面第2步"查看控制单元"可知耳机音量控制单元为:

numid=5, iface=MIXER, name='Headphone Playback Volume'

SPI 测试

在 <u>http://wiki.armbbs.net/tqwiki/public/docs/</u>链接中找到所使用的板卡,然后进入"硬件开发指南->pin 脚功能"目录寻找 spi 的管脚和设备节点。

测试命令为:

#/test_file/spi_test xxx

其中 xxx 通过 WIKI "pin 脚功能"章节查看到的设备节点。

例如:

#/test_file/spi_test /dev/spidev1.0

测试结果如下所示:

```
root@Embedský:/opt/EmbedSký/test_demo/out# ./spi_test
SPI - Open Succeed. Start Init SPI...
spi mode: 0
bits per word: 8
max speed: 12000 KHz (12 MHz)
```

 FF
 FF
 FF
 FF
 FF
 FF

 40
 00
 00
 00
 00
 95

 FF
 FF
 FF
 FF
 FF
 FF

 DE
 AD
 BE
 EF
 BA
 AD

 F0
 OD
 OD
 OD
 OD
 OD

【注:】如果没有短接,输出的数组为0。

4G 模块测试

板卡配套的 4G 模块是有方的 N720。

连接"有方 N720"4G 模块(包括 SIM 卡和天线),如图所示:

N720 模块使用以下命令:

#pppd call n720_init &

root@Embedsky:/test_file# cd /etc/ppp/peers/ root@Embedsky:/etc/ppp/peers# pppd call n720_init &

rcvd [IPCP ConfReq id=0x0] IPCP confNak id=0x0 <addr 0.0.0.0>] sent IPCP ConfRej id=0x1 <compress VJ Of 01>] rcvd IPCP ConfReq id=0x2 <addr 0.0.0.0> <ms-dns1 0.0.0.0> <ms-dns2 0.0.0.0>] sent IPCP ConfReq id=0x1] rcvd sent [IPCP ConfAck id=0x1] rcvd [IPCP ConfNak id=0x2 <addr 10.10.151.69> <ms-dns1 202.96.128.86> <ms-dns2 202.96.134.133> sent [IPCP ConfReq id=0x3 <addr 10.10.151.69> <ms-dns1 202.96.128.86> <ms-dns2 202.96.134.133> rcvd [IPCP ConfAck id=0x3 <addr 10.10.151.69> <ms-dns1 202.96.128.86> <ms-dns2 202.96.134.133> could not determine remote IP address: defaulting to 10.64.64.64 local IP address 10.10.151.69 remote IP address 10.10.191.09 primary DNS address 202.96.128.86 secondary DNS address 202.96.134.133 script /etc/ppp/ip-up started (pid 1070) script /etc/ppp/ip-up finished (pid 1070), status = 0x63

如看到如上类似的 LOG, 表示拨号成功, 这时候输入 ifconfig 可以看到生成了一个 ppp0 节点。

root@Embedsky:/test_file# ifconfig Link encap:Ethernet Hwaddr DA:18:F2:46:63:A3 eth0 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 10 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:34 errors:0 dropped:0 overruns:0 frame:0 TX packets:34 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:2380 (2.3 KiB) TX bytes:2380 (2.3 KiB) Link encap:Point-to-Point Protocol ppp0 inet addr:10.10.151.69 P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:62 (62.0 B) TX bytes:101 (101.0 B)

以上步骤成功之后,只能 ping 通 ip,无法 ping 通百度:

root@Embedsky:/test_file# ping 202.96.128.86 PING 202.96.128.86 (202.96.128.86): 56 data bytes 64 bytes from 202.96.128.86: seq=0 ttl=55 time=348.984 ms 64 bytes from 202.96.128.86: seq=1 ttl=55 time=21.020 ms 64 bytes from 202.96.128.86: seq=2 ttl=55 time=60.280 ms ^C --- 202.96.128.86 ping statistics ---3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 21.020/143.428/348.984 ms

root@Embedsky:/test_file# ping www.baidu.com
ping: bad address 'www.baidu.com'

当拨号成功后,会在/etc/ppp/目录下产生一个 resolv.conf 文件,里面包含两个 DNS, 替换/etc 下的就可以了,命令如下:

#cp /etc/ppp/resolv.conf /etc/resolv.conf

root@Embedsky:/test_file# cp /etc/ppp/resolv.conf /etc/resolv.conf root@Embedsky:/test_file# ping www.baidu.com PING www.baidu.com (180.101.49.42): 56 data bytes 64 bytes from 180.101.49.42: seq=0 ttl=51 time=55.359 ms 64 bytes from 180.101.49.42: seq=1 ttl=51 time=91.227 ms ^c --- www.baidu.com ping statistics ---2 packets transmitted, 2 packets received, 0% packet loss round-trip min/avg/max = 55.359/73.293/91.227 ms

此时即可 ping 通百度。

WiFi 模块测试

Wifi 热点发送功能

本方法仅保证适用于 tq-8723-wifi 模块,插上模块,串口终端会打印以下 log:

root@Embedsky:/test_file# usb 1-1.2: new high-speed USB device number 4 using ci_hdrc usb 1-1.2: New USB device found, idvendor=06da, idProduct=b720 usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 usb 1-1.2: Product: 802.11n WLAN Adapter usb 1-1.2: Manufacturer: Realtek usb 1-1.2: SerialNumber: 00e04c000001 rtk_btusb: btusb_probe intf->cur_altsetting->desc.bInterfaceNumber=0
rtk_btusb: btusb_probe can_wakeup=1 flag2=0 rtk_btusb: patch_add rtk_btusb: auto suspend is disabled rtk_btusb: pid = 0xb720 rtk_btusb: set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); rtk_btusb: btusb_open start pm_usage_cnt(0x1) rtk_btusb: btusb_open hdev->promisc ==0 rtk_btusb: download_patch start
rtk_btusb: read_ver_rsp->lmp_subver = 0x8723 rtk_btusb: patch_entry->1mp_sub = 0x8723 rtk_btusb: get_firmware start
rtk_btusb: load_firmware start
rtk_btusb: lmp_version = 0x8723 rtk_btusb: config name is rtl8723bu_config usb 1-1.2: Direct firmware load for rtl8723bu_config failed with error -2 usb 1-1.2: Falling back to user helper RTL871X: hal_com_config_channel_plan chplan:0x20 RTL871X: rtw_ndev_init(wlan0) if1 mac_addr=48:46:c1:08:59:7f RTL871X: rtw_ndev_init(wlan1) if2 mac_addr=4a:46:c1:08:59:7f rtk_btusb: fw name is rtl8723b_fw usb 1-1.2: Direct firmware load for rtl8723b_fw failed with error -2 usb 1-1.2: Falling back to user helper rtk_btusb: get_firmware failed! rtk_btusb: Rtk patch end -1 rtk_btusb: btusb_open failed pm_usage_cnt(0x0) IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready RTL871X: set bssid:00:00:00:00:00:00

```
执行脚本:
```

#/test_file/send_ap.sh

root@Embedsky:~# cd /test_file/ root@Embedsky:/test_file# ./send_ap.sh kill: not enough arguments kill: not enough arguments configuration file: /etc/hostapd.conf IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready Using interface wlan0 with hwaddr 48:46:c1:58:d5:14 and ssid "test" random: Cannot read from /dev/random: Resource temporarily unavailable random: Only 0/20 bytes of strong random data available from /dev/random random: Not enough entropy pool available for secure operations WPA: Not enough entropy in random pool for secure operations - update keys later when the first station connects RTL871X: assoc success IPv6: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready wlan0: interface state UNINITIALIRTL871X: set group key camid:1, addr:00:00:00:00:00:00, kid:1, type:TKIP ZED->ENABLED wlan0: AP-ENABLED voot@Embedsky:/test_file# udhcpd (v1.23.2) started

【注:】修改账号密码方法:

#vi /etc/hostapd.conf

(默认账号: test 密码: 12345678)

账号对应项: ssid=test 密码对应项: wpa_passphrase=12345678

此时用手机查看 wifi 列表,可看到出现名称为"test"的 ssid,输入密码"12345678",连接后可看 到开发板串口打印出以下信息:

```
RTL871X: set pairwise key camid:4, addr:50:c8:e5:76:99:5d, kid:0, type:AES
Sending OFFER of 192.168.0.20
Sending OFFER of 192.168.0.20
Sending ACK to 192.168.0.20
```

Wifi 连接热点功能

本方法仅保证适用于 tq-8723-wifi 模块,插上模块,在板卡串口终端上依次执行以下命令:

#ifconfig wlan0 up

#wpa_supplicant -i wlan0 -Dnl80211 -c /etc/wpa_supplicant.conf &

#udhcpc -i wlan0

出现以下打印即测试成功:

udhcpc (v1.23.2) started Sending discover... Sending discover... Sending discover... Sending discover... Sending discover...

【注:】修改 wifi 用户、密码:

#vi /etc/wpa_supplicant.conf

(默认账号: CDMA-yalu 密码: 1234567890)

账号对应项: ssid="CDMA-yalu" 密码对应项: psk="1234567890"